Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Maya HITES; Clément R. MASSONNAUD; Simon JAMARD; François Goehringer; François DANION; Jean REIGNIER; Nathalie DE CASTRO; Denis GAROT; Eva LARRANAGA LAPIQUE; Karine LACOMBE; Violaine TOLSMA; Emmanuel FAURE; Denis MALVY; Therese STAUB; Johan COURJON; France CAZENAVE-ROBLOT; Anne Ma DYRHOL RIISE; Paul LE TURNIER; Guillaume MARTIN BLONDEL; Claire ROGER; Karolina AKINOSOGLOU; Vincent LE MOING; Lionel PIROTH; Pierre SELLIER; Xavier LESCURE; Marius TROSEID; Philippe CLEVENBERGH; Olav DALGARD; Sébastien GALLIEN; Marie GOUSSEFF; Paul LOUBET; Fanny BOUNES - VARDON; Clotilde VISEE; LEILA BELKHIR; Elisabeth BOTELHO-NEVERS; André CABIE; Anastasia KOTANIDOU; Fanny LANTERNIER; Elisabeth ROUVEIX-NORDON; Susana SILVA; Guillaume THIERY; Pascal POIGNARD; Guislaine CARCELAIN; Alpha DIALLO; Noemie MERCIER; Vida TERZIC; Maude BOUSCAMBERT; Alexandre GAYMARD; Mary-Anne TRABAUD; Grégory DESTRAS; Laurence JOSSET; Drifa BELHADI; Nicolas BILLARD; Jeremie GUEDJ; Thi-Hong-Lien HAN; Sandrine COUFFIN-CADIERGUES; Aline DECHANET; Christelle DELMAS; Hélène ESPEROU; Claire FOUGEROU-LEURENT; Soizic LE MESTRE; Annabelle METOIS; Marion NORET; Isabelle BALLY; Sebastián DERGAN-DYLON; Sarah TUBIANA; Ouifiya KALIF; Nathalie BERGAUD; Benjamin LEVEAU; Joe EUSTACE; Richard GREIL; Edit HAJDU; Monika HALANOVA; José Artur PAIVA; Anna PIEKARSKA; Jesus RODRIGUEZ BANO; Kristian TONBY; Milan TROJANEK; Sotirios TSIODRAS; Serhat UNAL; Charles BURDET; Dominique COSTAGLIOLA; Yazdan YAZDANPANAH; Nathan PEIFFER-SMADJA; France MENTRE; Florence ADER.
medrxiv; 2024.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2024.02.23.24302586

ABSTRACT

Background Tixagevimab and cilgavimab (AZD7442) are two monoclonal antibodies developed by AstraZeneca for the pre-exposure prophylaxis and treatment of patients infected by SARS-CoV-2. Its effectiveness and safety in patients hospitalized with COVID-19 was not known at the outset of this trial. Methods DisCoVeRy is a phase 3, adaptive, multicentre, randomized, controlled trial conducted in 63 sites in Europe. Participants were randomly assigned (1:1) to receive placebo or tixagevimab-cilgavimab in addition to standard of care. The primary outcome was the clinical status at day 15 measured by the WHO seven-point ordinal scale. Several clinical, virological, immunological and safety endpoints were also assessed. Findings Due to slow enrolment, recruitment was stopped on July 1st, 2022. The antigen positive modified intention-to-treat population (mITT) was composed of 173 participants randomized to tixagevimab-cilgavimab (n=91) or placebo (n=82), 91.9% (159/173) with supplementary oxygen, and 47.4% (82/173) previously vaccinated at inclusion. There was no significant difference in the distribution of the WHO ordinal scale at day 15 between the two groups (odds ratio (OR) 0.93, 95%CI [0.54-1.61]; p=0.81) nor in any clinical, virological or safety secondary endpoints. In the global mITT (n=226), neutralization antibody titers were significantly higher in the tixagevimab-cilgavimab group/patients compared to placebo at day 3 (Least-square mean differences (LSMD) 1.44, 95% Confidence interval (CI) [1.20-1.68]; p < 10-23) and day 8 (LSMD 0.91, 95%CI [0.64-1.18]; p < 10-8) and it was most important for patients infected with a pre-omicron variant, both at day 3 (LSMD 1.94, 95% CI [1.67-2.20], p < 10-25) and day 8 (LSMD 1.17, 95% CI [0.87-1.47], p < 10-9), with a significant interaction (p < 10-7 and p=0.01 at days 3 and 8, respectively). Interpretation There were no significant differences between tixagevimab-cilgavimab and placebo in clinical endpoints, however the trial lacked power compared to prespecified calculations. Tixagevimab-cilgavimab was well tolerated, with low rates of treatment related events.


Subject(s)
COVID-19
2.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.03.30.22273206

ABSTRACT

Background: The antiviral efficacy of remdesivir is still controversial. We aimed at evaluating its clinical effectiveness in hospitalised patients with COVID-19, with indication of oxygen and/or ventilator support. Following prior publication of preliminary results, here we present the final results after completion of data monitoring. Methods: In this European multicentre, open-label, parallel-group, randomised, controlled trial (DisCoVeRy, NCT04315948, EudraCT2020-000936-23), participants were randomly allocated to receive usual standard of care (SoC) alone or in combination with remdesivir, lopinavir/ritonavir, lopinavir/ritonavir and IFN-beta-1a, or hydroxychloroquine. Adult patients hospitalised with COVID-19 were eligible if they had clinical evidence of hypoxemic pneumonia, or required oxygen supplementation. Exclusion criteria included elevated liver enzyme, severe chronic kidney disease, any contra-indication to one of the studied treatments or their use in the 29 days before randomization, or use of ribavirin, as well as pregnancy or breast-feeding. Here, we report results for remdesivir + SoC versus SoC alone. Remdesivir was administered as 200 mg infusion on day 1, followed by once daily infusions of 100 mg up to 9 days, for a total duration of 10 days. It could be stopped after 5 days if the participant was discharged. Treatment assignation was performed via web-based block randomisation stratified on illness severity and administrative European region. The primary outcome was the clinical status at day 15 measured by the WHO 7-point ordinal scale, assessed in the intention-to-treat population. Findings: Between March 22nd, 2020 and January 21st, 2021, 857 participants were randomised to one of the two arms in 5 European countries and 843 participants were included for the evaluation of remdesivir (control, n=423; remdesivir, n=420). At day 15, the distribution of the WHO ordinal scale was as follow in the remdesivir and control groups, respectively: Not hospitalized, no limitations on activities: 62/420 (14.8%) and 72/423 (17.0%); Not hospitalized, limitation on activities: 126/420 (30%) and 135/423 (31.9%); Hospitalized, not requiring supplemental oxygen: 56/420 (13.3%) and 31/423 (7.3%); Hospitalized, requiring supplemental oxygen: 75/420 (17.9%) and 65/423 (15.4%); Hospitalized, on non-invasive ventilation or high flow oxygen devices: 16/420 (3.8%) and 16/423 (3.8%); Hospitalized, on invasive mechanical ventilation or ECMO: 64/420 (15.2%) and 80/423 (18.9%); Death: 21/420 (5%) and 24/423 (5.7%). The difference between treatment groups was not statistically significant (OR for remdesivir, 1.02, 95% CI, 0.62 to 1.70, P=0.93). There was no significant difference in the occurrence of Serious Adverse Events between treatment groups (remdesivir, n=147/410, 35.9%, versus control, n=138/423, 32.6%, p=0.29). Interpretation: Remdesivir use for the treatment of hospitalised patients with COVID-19 was not associated with clinical improvement at day 15. Funding: European Union Commission, French Ministry of Health, DIM One Health Ile-de-France, REACTing, Fonds Erasme-COVID-ULB; Belgian Health Care Knowledge Centre (KCE), AGMT gGmbH, FEDER "European Regional Development Fund", Portugal Ministry of Health, Portugal Agency for Clinical Research and Biomedical Innovation. Remdesivir was provided free of charge by Gilead.


Subject(s)
COVID-19 , Renal Insufficiency, Chronic , Pneumonia
3.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.02.16.22271064

ABSTRACT

Objectives We evaluated the clinical, virological and safety outcomes of lopinavir/ritonavir, lopinavir/ritonavir-interferon (IFN)-β-1a, hydroxychloroquine or remdesivir in comparison to standard of care (control) in COVID-19 inpatients requiring oxygen and/or ventilatory support. While preliminary results were previously published, we present here the final results, following completion of the data monitoring. Methods We conducted a phase 3 multi-centre open-label, randomized 1:1:1:1:1, adaptive, controlled trial (DisCoVeRy), add-on trial to Solidarity ( NCT04315948 , EudraCT2020-000936-23). The primary outcome was the clinical status at day 15, measured by the WHO 7-point ordinal scale. Secondary outcomes included SARS-CoV-2 quantification in respiratory specimens, pharmacokinetic and safety analyses. We report the results for the lopinavir/ritonavir-containing arms and for the hydroxychloroquine arm, which were stopped prematurely. Results The intention-to-treat population included 593 participants (lopinavir/ritonavir, n=147; lopinavir/ritonavir-IFN-β-1a, n=147; hydroxychloroquine, n=150; control, n=149), among whom 421 (71.0%) were male, the median age was 64 years (IQR, 54-71) and 214 (36.1%) had a severe disease. The day 15 clinical status was not improved with investigational treatments: lopinavir/ritonavir versus control, adjusted odds ratio (aOR) 0.82, (95% confidence interval [CI] 0.54-1.25, P=0.36); lopinavir/ritonavir-IFN-β-1a versus control, aOR 0.69 (95%CI 0.45-1.05, P=0.08); hydroxychloroquine versus control, aOR 0.94 (95%CI 0.62-1.41, P=0.76). No significant effect of investigational treatment was observed on SARS-CoV-2 clearance. Trough plasma concentrations of lopinavir and ritonavir were higher than those expected, while those of hydroxychloroquine were those expected with the dosing regimen. The occurrence of Serious Adverse Events was significantly higher in participants allocated to the lopinavir/ritonavir-containing arms. Conclusion In adults hospitalized for COVID-19, lopinavir/ritonavir, lopinavir/ritonavir-IFN-ß-1a and hydroxychloroquine did not improve the clinical status at day 15, nor SARS-CoV-2 clearance in respiratory tract specimens.


Subject(s)
COVID-19
4.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.10.19.21265209

ABSTRACT

Despite several clinical studies, the antiviral efficacy of remdesivir in COVID-19 hospitalized patients remains controversial. We analyzed nasopharyngeal normalized viral loads collected in the 29 days following randomization from 665 hospitalized patients included in the DisCoVeRy trial, allocated to either standard of care (SoC, N=329) or SoC + remdesivir for 10 days (N=336). We used a mathematical model to reconstruct viral kinetic profiles and estimate the antiviral efficacy of remdesivir in reducing viral production. To identify factors associated with viral kinetics, additional analyses were conducted stratified either on time of treatment initiation ([≤] or > 7 days since symptom onset) or viral load at randomization (< or [≥] 3.5 log10 copies/104 cells). In our model, remdesivir reduced viral production by 2-fold on average (95%CI: 1.5-3.2). Using the estimated parameter of the model, simulations predict that remdesivir reduces time to viral clearance by 0.7 day compared to SoC, with large inter-individual variabilities (Inter-Quartile Range, IQR: 0.0-1.3 days). Exploratory analyses suggest that remdesivir had a larger impact in patients with a high viral load at randomization, reducing viral production by 5-fold on average (95%CI: 2.8-25), leading to a predicted median reduction in the time to viral clearance of 2.4 days (IQR: 0.9-4.5 days). In summary, our model shows that remdesivir reduces viral production from infected cells by a factor 2, leading to a median reduction of 0.7 days in the time to viral clearance compared to SoC. The efficacy was larger in patients with high level of viral load at treatment initiation. One sentence summaryRemdesivir reduces the time to SARS-CoV-2 clearance by 1 day in hospitalized patients, and up to 3 days in those with high viral load at admission.


Subject(s)
COVID-19
5.
ssrn; 2021.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3854628

ABSTRACT

Background: The antiviral efficacy of remdesivir is still controversial. We aimed at evaluating its clinical effectiveness in patients with COVID-19 requiring oxygen and/or ventilator support.Methods: In this European multicentre, open-label, parallel-group, randomised, controlled trial in adults hospitalised with COVID-19 (DisCoVeRy, NCT04315948; EudraCT2020-000936-23), participants were randomly allocated to receive usual standard of care alone or in combination with intravenous remdesivir (200 mg on day 1, then 100 mg once-daily for 9 days or until discharge). Treatment assignation was performed via web-based randomisation stratified on illness severity and administrative European region. The primary outcome was the clinical status at day 15 measured by the WHO 7-point ordinal scale, assessed in the intention-to-treat population.Findings: Between March 22nd, 2020 and January 21st, 2021, 857 participants were randomised to one of the two arms in 5 European countries and 832 participants were included for the evaluation of remdesivir (control, n=418; remdesivir, n=414). There was no difference in the clinical status neither at day 15 between treatment groups (OR for remdesivir, 0.98, 95% CI, 0.77 to 1.25, P=0.85) nor at day 29. The proportion of deaths at day 28 was not significantly different between control (8.9%) and remdesivir (8.2%) treatment groups (OR for remdesivir, 0.93 95%CI 0.57 to 1.52, P=0.77). There was also no difference on SARS-CoV-2 viral kinetics (effect of remdesivir on viral load slope, -0.004 log10 cp/10,000 cells/day, 95% CI, -0.03 to 0.02, P=0.75). There was no significant difference in the occurrence of Serious Adverse Events between treatment groups.Interpretation: The use of remdesivir for the treatment of hospitalised patients with COVID-19 was not associated with clinical improvement at day 15 or day 29, nor with a reduction in mortality, nor with a reduction in SARS-CoV-2 RNA.Trial Registration: DisCoVeRy, NCT04315948; EudraCT2020-000936-23Funding: European Union Commission, French Ministry of Health, DIM One Health Île-de-France, REACTing, Fonds Erasme-COVID-ULB; Belgian Health Care Knowledge Centre (KCE)Declaration of Interests: Dr. Costagliola reports grants and personal fees from Janssen, personal fees from Gilead, outside the submitted work. Dr. Mentré reports grants from INSERM Reacting (French Government), grants from Ministry of Health (French Government), grants from European Commission, during the conduct of the study; grants from Sanofi, grants from Roche, outside the submitted work. Dr. Hites reports grants from The Belgian Center for Knowledge (KCE), grants from Fonds Erasme-COVID-ULB, during the conduct of the study; personal fees from Gilead, outside the submitted work. Dr. Mootien reports non-financial support from GILEAD, outside the submitted work. Dr. Gaborit reports non-financial support from Gilead, non- financial support from MSD, outside the submitted work. Dr. Botelho-Nevers reports other from Pfizer, other from Janssen, outside the submitted work. Dr. Lacombe reports personal fees and non-financial support from Gilead, personal fees and non-financial support from Janssen, personal fees and non-financial support from MSD, personal fees and non-financial support from ViiV Healthcare, personal fees and non-financial support from Abbvie, during the conduct of the study. Dr. Wallet reports personal fees and non-financial support from Jazz pharmaceuticals, personal fees and non-financial support from Novartis, personal fees and nonPage financial support from Kite-Gilead, outside the submitted work. Dr. Kimmoun reports personal fees from Aguettan, personal fees from Aspen, outside the submitted work. Dr. Thiery reports personal fees from AMGEN, outside the submitted work. Dr. Burdet reports personal fees from Da Volterra, personal fees from Mylan Pharmaceuticals, outside the submitted work. Dr. Poissy reports personal fees from Gilead for lectures, outside the submitted work. Dr. Goehringer reports personal fees from Gilead Sciences, non-financial support from Gilead Sciences, grants from Biomerieux, non-financial support from Pfizer, outside the submitted work. Dr. Peytavin reports personal fees from Gilead Sciences, personal fees from Merck France, personal fees from ViiV Healthcare, personal fees from TheraTechnologies, outside the submitted work. Dr. Danion reports personal fees from Gilead, outside the submitted work. Dr. Raffi reports personal fees from Gilead, personal fees from Janssen, personal fees from MSD, personal fees from Abbvie, personal fees from ViiV Healthcare, personal fees from Theratechnologies, personal fees from Pfizer, outside the submitted work. Dr. Gallien reports personal fees from Gilead, personal fees from Pfizer, personal fees from ViiV, personal fees from MSD, outside the submitted work; and has received consulting fee from Gilead in August 2020 to check the registration file of remdesivir for the French administration. Dr. Nseir reports personal fees from MSD, personal fees from Pfizer, personal fees from Gilead, personal fees from Biomérieux, personal fees from BioRad, outside the submitted work. Dr. Lefèvre reports personal fees from Mylan, personal fees from Gilead, outside the submitted work. Dr. Guedj reports personal fees from Roche, outside the submitted work. Other authors have nothing to disclose.Ethics Approval Statement: The trial was approved by the Ethics Committee (CPP Ile-de-France-III, approval #20.03.06.51744), and is sponsored by the Institut national de la santé et de la recherche médicale (Inserm, France); it was conducted in accordance with the Declaration of Helsinki. Written informed consent was obtained from all included participants (or their legal representatives if unable to consent). The present analysis is based on the protocol v11.0 of December 12th, 2020.


Subject(s)
COVID-19 , Multiple Sulfatase Deficiency Disease
6.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-177881.v1

ABSTRACT

Background: All prevention efforts currently being implemented for COVID-19 are aimed at reducing the burden on strained health systems and human resources. There has been little research conducted to understand how SARS-CoV-2 has affected healthcare systems and professionals in terms of their work. Finding effective ways to share the knowledge and insight between countries, including lessons learned, is paramount to the international containment and management of the COVID-19 pandemic. The aim of this project is to compare the pandemic response to COVID-19 in Brazil, Canada, China, France, Japan, and Mali. This comparison will be used to identify strengths and weaknesses in the response, including challenges for health professionals and health systems.Methods:  We will use a multiple case study approach with multiple levels of nested analysis. We chose these countries as they represent different continents and different stages of the pandemic. We will focus on several major hospitals and two public health interventions (contact tracing and testing). It is a multidisciplinary research approach that will use qualitative data through observations, document analysis, and interviews, as well as quantitative data based on disease surveillance data and other publicly available data. Given that the methodological approaches of the project are largely qualitative, the ethical risks are minimal. For the quantitative component, the data being used are publicly available.Discussion: We will deliver lessons learned based on a rigorous process and on strong evidence to enable operational-level insight for national and international stakeholders.


Subject(s)
COVID-19
7.
ssrn; 2021.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3773509

ABSTRACT

Background: Patients who smoke and with preexisting comorbidities have a greater risk of developing severe coronavirus disease 2019 (COVID-19) and have a higher mortality rate. However, the number of deaths attributable to diabetes, hypertension, obesity, or smoking have never been estimated. We conducted a systematic literature review and meta-analysis of observational studies to investigate the association between diabetes, hypertension, body mass index (BMI) or smoking with the risk of death in patients with COVID-19.Methods: Relevant observational studies were identified by searches in the PubMed and Embase databases through October 29, 2020. Random-effects models were used to estimate summary relative risks (SRRs) and 95% confidence intervals (CIs). We further estimated the proportion of deaths attributable to these conditions. Certainty of evidence was assessed using the Cochrane methods and the GRADE framework. This study is registered with PROSPERO, CRD42020218115.Findings: A total of 186 studies representing 210,447 deaths among 1,304,587 patients with COVID-19 were included in this analysis. The SRR for death in COVID-19 patients was 1.54 (95% CI=1.44-1.64, I2=92%, n=145, low certainty) for diabetes and 1.42 (95% CI=1.30-1.54, I2=90%, n=127, low certainty) for hypertension compared to patients without each of these comorbidities. Regarding obesity, the SSR was 1.45 (95% CI=1.31-1.61, I2=91%, n=54, high certainty) for patients with BMI ≥30kg/m2 compared to those with BMI <30kg/m2 and 1.12 (95% CI=1.07-1.17, I2=68%, n=25) per 5 kg/m2 increase in BMI. There was evidence of a J-shaped non-linear dose-response relationship between BMI and mortality from COVID-19, with the nadir of the curve at a BMI of around 22-24, and a 1.5-2 fold increase in COVID-19 mortality with extreme obesity (BMI of 40-50). The SRR was 1.28 (95% CI=1.29-1.50, I2=74.0, n=28, low certainty) for ever, 1.29 (95% CI=1.03-1.62, I2=84%, n=19) for current and 1.26 (95% CI=1.11-1.42, I2=84%, n=14) for former smokers compared to never smokers. The proportion of deaths attributable to diabetes, hypertension, obesity, and smoking was 8%, 7%, 11%, and 2%, respectively.Interpretation: Our findings suggest that diabetes, hypertension, obesity and smoking are major contributors to COVID-19 mortality accounting for nearly 30% of COVID-19 deaths.Funding Statement: There was no funding source for this study.Declaration of Interests: We declare no competing interests.


Subject(s)
COVID-19 , Obesity , Diabetes Mellitus , Hypertension
8.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.01.08.20248149

ABSTRACT

Background: Lopinavir/ritonavir, lopinavir/ritonavir-interferon (IFN)-beta-1a and hydroxychloroquine efficacy for COVID-19 have been evaluated, but detailed evaluation is lacking. Objective: To determine the efficacy of lopinavir/ritonavir, lopinavir/ritonavir-IFN-beta-1a, hydroxychloroquine or remdesivir for improving the clinical, virological outcomes in COVID-19 inpatients. Design: Open-label, randomized, adaptive, controlled trial. Setting: Multi-center trial with patients from France. Participants: 583 COVID-19 inpatients requiring oxygen and/or ventilatory support Intervention: Standard of care (SoC, control), SoC plus lopinavir/ritonavir (400 mg lopinavir and 100 mg ritonavir every 12h for 14 days), SoC plus lopinavir/ritonavir plus IFN-beta-1a (44 micrograms of subcutaneous IFN-beta-1a on days 1, 3, and 6), SoC plus hydroxychloroquine (400 mg twice on day 1 then 400 mg once daily for 9 days) or SoC plus remdesivir (200 mg intravenously on day 1 then 100 mg once-daily for hospitalization duration or 10 days). Measurements: The primary outcome was the clinical status at day 15, measured by the WHO 7-point ordinal scale. Secondary outcomes included SARS-CoV-2 quantification in respiratory specimens and safety analyses. Results: Adjusted Odds Ratio (aOR) for the WHO 7-point ordinal scale were not in favor of investigational treatments: lopinavir/ritonavir versus control, aOR 0.83, 95%CI, 0.55 to 1.26, P=0.39; lopinavir/ritonavir-IFN-beta-1a versus control, aOR 0.69, 95%CI, 0.45 to 1.04, P=0.08; hydroxychloroquine versus control, aOR 0.93, 95%CI, 0.62 to 1.41, P=0.75. No significant effect on SARS-CoV-2 RNA clearance in respiratory tract was evidenced. Lopinavir/ritonavir-containing treatments were significantly associated with more SAE. Limitations: Not a placebo-controlled, no anti-inflammatory agents tested. Conclusion: No improvement of the clinical status at day 15 nor SARS-CoV-2 RNA clearance in respiratory tract specimens by studied drugs. This comforts the recent Solidarity findings. Registration: NCT04315948. Funding: PHRC 2020, Dim OneHealth, REACTing


Subject(s)
COVID-19
9.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.09.18.20195669

ABSTRACT

IMPORTANCE The appropriate use of facemasks, recommended or mandated by authorities, is critical to protect the community and prevent the spread of COVID-19. OBJECTIVE To evaluate the frequency and quality of facemask use in general populations of different socio-spatial backgrounds. DESIGN A multi-site observational study carried out from 25 June 2020 to 21 July 2020. SETTING The observations were carried out in 43 different locations in a region in the west of France, representing various areas: rural and urban, indoor and outdoor, and in areas where masks were mandated or not. An observer was positioned at a predetermined place, facing a landmark, and collected information about the use of facemasks and socio-demographic data. PARTICIPANTS All individual passing between the observer and the landmark were included. EXPOSURE The observer collected information on whether a mask was worn, the type of mask used, the quality of the positioning, gender, and the age category of each individual. MAIN OUTCOMES AND MEASURES The main outcomes were the use of a facemask and the quality of the positioning. Factors associated with these outcomes were identified. RESULTS A total of 3354 observations were recorded. A facemask was worn by 56.4% (n=1892) of individuals, varying from 49% (n=1359) in non-mandatory areas and 91.7% (n=533) in mandatory areas, including surgical facemasks (56.8%, n=1075) and cloth masks (43.2%, n=817). The facemask was correctly positioned in 75.2% (n=1422) of cases. The factors independently associated with wearing a facemask were being indoors (adjusted odds ratio [aOR], 0.37; 95% confidence interval [CI], 0.31-0.44), being in a mandatory area (aOR, 0.14; 95%CI, 0.10-0.20), female gender (aOR, 0.57; 95%CI, 0.49-0.66), and age >40 years (aOR, 0.54; 95%CI, 0.46-0.63). The factors independently associated with correct mask position were rural location (aOR, 0.76; 95%CI, 0.97-0.98), being in an indoor area (aOR, 0.49; 95%CI, 0.38-0.65), use of a cloth mask (aOR, 0.65; 95%CI, 0.52-0.81), and age >40 years (aOR, 0.61; 95%CI 0.49-0.76). CONCLUSIONS AND RELEVANCE Information campaigns should promote the use of cloth masks. Young people in general and men in particular are the priority targets. Simplifying the rules to require universal mandatory masking seems to be the best approach for health authorities.


Subject(s)
COVID-19
10.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.09.09.20191213

ABSTRACT

Introduction A controversy remains worldwide regarding the transmission routes of SARS-CoV-2 in hospital settings. We reviewed the current evidence on the air contamination with SARS-CoV-2 in hospital settings, and the factors associated to the contamination including the viral load and the particles size. Methods The MEDLINE, Embase, Web of Science databases were systematically interrogated for original English-language articles detailing COVID-19 air contamination in hospital settings between 1 December 2019 and 21 July 2020. This study was conducted in accordance with the PRISMA-ScR guidelines. The positivity rate of SARS-CoV-2 viral RNA and culture were described and compared according to the setting, clinical context, air ventilation system, and distance from patient. The SARS-CoV-2 RNA concentrations in copies per m3 of air were pooled and their distribution were described by hospital areas. Particle sizes and SARS-CoV-2 RNA concentrations in copies or TCID50 per m3 were analysed after categorization of sizes in <1 micrometers, 1-4 micrometers, and >4 micrometers. Results Among 2,034 records identified, 17 articles were included in the review. Overall, 27.5% (68/247) of air sampled from close patients environment were positive for SARS-CoV-2 RNA, without difference according to the setting (ICU: 27/97, 27.8%; non-ICU: 41/150, 27.3%; p=0.93), the distance from patients (<1 meter: 1/64, 1.5%; 1-5 meters: 4/67, 6%; p=0.4). In other areas, the positivity rate was 23.8% (5/21) in toilets, 9.5% (20/221) in clinical areas, 12.4% (15/121) in staff areas, and 34.1% (14/41) in public areas. A total of 78 viral cultures were performed in three studies, and 3 (4%) were positive, all from close patients environment. The median SARS-CoV-2 RNA concentrations varied from 1.103 copies per m3 (IQR: 0.4.103-9.103) in clinical areas to 9.7.103 (5.1.103-14.3.103) in the air of toilets or bathrooms. The protective equipment removal and patients rooms had high concentrations/titre of SARS-CoV-2 with aerosol size distributions that showed peaks in the <1 micrometers region, and staff offices in the >4 micrometers region. Conclusion In hospital, the air near and away from COVID-19 patients is frequently contaminated with SARS-CoV-2 RNA, with however, rare proofs of their viability. High viral loads found in toilet/bathrooms, staff and public hallways suggests to carefully consider these areas.


Subject(s)
COVID-19
11.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.13.249847

ABSTRACT

In the last decade Open Science principles have been successfully advocated for and are being slowly adopted in different research communities. In response to the COVID-19 pandemic many publishers and researchers have sped up their adoption of Open Science practices, sometimes embracing them fully and sometimes partially or in a sub-optimal manner. In this article, we express concerns about the violation of some of the Open Science principles and its potential impact on the quality of research output. We provide evidence of the misuses of these principles at different stages of the scientific process. We call for a wider adoption of Open Science practices in the hope that this work will encourage a broader endorsement of Open Science principles and serve as a reminder that science should always be a rigorous process, reliable and transparent, especially in the context of a pandemic where research findings are being translated into practice even more rapidly. We provide all data and scripts at https://osf.io/renxy/.


Subject(s)
COVID-19
12.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.07.15.20154260

ABSTRACT

Background: The clinical description of the neurological manifestations in COVID-19 patients is still underway. This study aims to provide an overview of the spectrum, characteristics and outcomes of neurological manifestations associated with SARS-CoV-2 infection. Methods: We conducted a nationwide, multicentric, retrospective study during the French COVID-19 epidemic in March-April 2020. All COVID-19 patients with de novo neurological manifestations were eligible. Results: We included 222 COVID-19 patients with neurological manifestations from 46 centers throughout the country. Median age was 65 years (IQR 53-72), and 136 patients (61.3%) were male. COVID-19 was severe or critical in almost half of the patients (102, 45.2%). The most common neurological diseases were COVID-19 associated encephalopathy (67/222, 30.2%), acute ischemic cerebrovascular syndrome (57/222, 25.7%), encephalitis (21/222, 9.5%), and Guillain-Barre Syndrome (15/222, 6.8%). Neurological manifestations appeared after first COVID-19 symptoms with a median (IQR) delay of 6 (3-8) days in COVID-19 associated encephalopathy, 7 (5-10) days in encephalitis, 12 (7-18) days in acute ischemic cerebrovascular syndrome and 18 (15-28) days in Guillain-Barre Syndrome. Brain imaging was performed in 192 patients (86.5%), including 157 MRI (70.7%). Brain MRI of encephalitis patients showed heterogeneous acute non vascular lesion in 14/21 patients (66.7%) with associated small ischemic lesion or microhemorrhages in 4 patients. Among patients with acute ischemic cerebrovascular syndrome, 13/57 (22.8%) had multi territory ischemic strokes, with large vessel thrombosis in 16/57 (28.1%). Cerebrospinal fluid was analyzed in 97 patients (43.7%), with pleocytosis in 18 patients (18.6%). A SARS-CoV-2 PCR was performed in 75 patients and was positive only in 2 encephalitis patients. Among patients with encephalitis, ten out of 21 (47.6%) fully recovered, 3 of whom received corticosteroids (CS). Less common neurological manifestations included isolated seizure (8/222, 3.6%), critical illness neuropathy (8/222, 3.6%), transient alteration of consciousness (5/222, 2.3%), intracranial hemorrhage (5/222, 2.3%), acute benign lymphocytic meningitis (3/222, 1.4%), cranial neuropathy (3/222, 1.4%), single acute demyelinating lesion (2/222, 0.9%), Tapia syndrome (2/222, 0.9%), cerebral venous thrombosis (1/222, 0.5%), sudden paraparesis (1/222, 0.5%), generalized myoclonus and cerebellar ataxia (1/222, 0.5%), bilateral fibular palsy (1/222, 0.5%) and isolated neurological symptoms (headache, anosmia, dizziness, sensitive or auditive symptoms, hiccups, 15/222, 6.8%). The median (IQR) follow-up of the 222 patients was 24 (17-34) days with a high short-term mortality rate (28/222, 12.6%). Conclusion: Neurological manifestations associated with COVID-19 mainly included CAE, AICS, encephalitis and GBS. Clinical spectrum and outcomes were broad and heterogeneous, suggesting different underlying pathogenic processes.


Subject(s)
Neoplastic Syndromes, Hereditary , Myoclonus , COVID-19 , Seizures , Brain Diseases , Cranial Nerve Diseases , Critical Illness , Dizziness , Nystagmus, Pathologic , Brain Ischemia , Demyelinating Diseases , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Headache , Paraparesis , Heredodegenerative Disorders, Nervous System , Olfaction Disorders , Cerebellar Ataxia , Hiccup , Stroke , Guillain-Barre Syndrome , Thrombosis , Leukocytosis , Encephalitis , Intracranial Hemorrhages , Venous Thrombosis
13.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.05.30.20117937

ABSTRACT

Introduction Efficient therapeutic strategies are needed to counter the COVID-19 pandemic, caused by the SARS- CoV-2 virus. In a context where specific vaccines are not yet available, the containment of the pandemic would be facilitated with efficient prophylaxis. Methods We screened several clinical trials repositories and platforms in search of the prophylactic strategies that are investigated against COVID-19 in late April 2020. Results Up to April 27, 2020, we found 68 clinical trials targeting medical workers (n=43, 63%), patients relatives (n=16, 24%) or individuals at risk of severe COVID-19 (n=5, 7%). (Hydroxy)chloroquine was the most frequently evaluated treatment (n=46, 68%), before BCG vaccine (n=5, 7%). Sixty-one (90%) clinical trials were randomized with a median of planned inclusions of 600 (IQR 255-1515). Conclusion The investigated prophylaxis strategies cover both pre- and post-exposure prophylaxis and study numerous immune enhancers and antivirals, although most research efforts are focused on (hydroxy)chloroquine.


Subject(s)
COVID-19
14.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.04.27.20080226

ABSTRACT

Background: As novel coronavirus disease (COVID-19) cases continue to steeply rise globally within an unprecedented short period of time, solid evidence from large randomised controlled trials is still lacking. Currently, numerous trials testing potential treatment and preventative options are undertaken globally. Objectives: We summarised all currently registered clinical trials examining treatment and prevention options for COVID-19 pneumonia. Additionally, we evaluated the quality of the retrieved interventional studies. Data sources: The ClinicalTrials.gov, the Chinese Clinical Trial Registry and the European Union Clinical Trials Register were systematically searched. Study eligibility criteria: Registered clinical trials examining treatment and/or prevention options for COVID-19 were included. No language, country or study design restrictions were applied. Withdrawn, cancelled studies and trials not reporting therapeutic or preventative strategies for COVID-19 were excluded. Participants and interventions: No restrictions in terms of participants' age and medical background or type of intervention were enforced. Methods: The registries were searched using the term "coronavirus" or "COVID-19" from their inception until 26th March 2020. Additional manual search of the registries was also performed. Eligible studies were summarised and tabulated. Interventional trials were methodologically analysed, excluding expanded access studies and trials testing Traditional Chinese Medicine. Results: In total, 309 trials evaluating therapeutic management options, 23 studies assessing preventive strategies and 3 studies examining both were retrieved. Interventional treatment studies were mostly randomised (n=150, 76%) and open-label (n=73, 37%) with a median number of planned inclusions of 90 (IQR 40-200). Major categories of interventions that are currently being investigated are discussed. Conclusion: Numerous clinical trials have been registered since the onset of the COVID-19 pandemic. Summarised data on these trials will assist physicians and researchers to promote patient care and guide future research efforts for COVID-19 pandemic containment. However, up to the end of March, 2020, significant information concerning reported trials was lacking.


Subject(s)
COVID-19 , Coronavirus Infections , Pneumonia
15.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.03.18.20038190

ABSTRACT

Background: Although a number of antiviral agents have been evaluated for coronaviruses there are no approved drugs available. To provide an overview of the landscape of therapeutic research for COVID-19, we conducted a review of registered clinical trials. Methods: A review of currently registered clinical trials was performed on registries, including the Chinese (chictr.org.cn) and US (clinicaltrials.gov) databases to identify relevant studies up to March, 7th 2020. The search was conducted using the search terms "2019-nCoV", "COVID-19", "SARS-CoV-2", "Hcov-19", "new coronavirus", "novel coronavirus". We included interventional clinical trials focusing on patients with COVID-19 and assessing antiviral drugs or agents. Findings: Out of the 353 studies identified, 115 clinical trials were selected for data extraction. Phase IV trials were the most commonly reported study type (n=27, 23%). However, 62 trials (54%) did not describe the phase of the study. Eighty percent (n=92) of the trials were randomized with parallel assignment and the median number of planned inclusions was 63 (IQR, 36-120). Open-label studies were the most frequent (46%) followed by double-blind (13%) and single blind studies (10%). The most frequently assessed therapies were: stem cells therapy (n=23 trials), lopinavir/ritonavir (n=15), chloroquine (n=11), umifenovir (n=9), hydroxychloroquine (n=7), plasma treatment (n=7), favipiravir (n=7), methylprednisolone (n=5), and remdesivir (n=5). Remdesivir was tested in 5 trials with a median of 400 (IQR, 394-453) planned inclusions per trial, while stem cells therapy was tested in 23 trials, but had a median of 40 (IQR, 23-60) planned inclusions per trial. Lopinavir/ritonavir was associated with the highest total number of planned inclusions (2606) followed by remdesivir (2155). Only 52% of the clinical trials reported the treatment dose (n=60) and only 34% (n=39) the duration. The primary outcome was clinical in 76 studies (66%), virological in 27 (23%); radiological in 9 (8%) or immunological in three studies (3%). Interpretation: Numerous clinical trials have been registered since the beginning of the COVID-19 outbreak, however, a number of information regarding drugs or trial design were lacking. Funding: None


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL